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@ First Mathematical Model for a neuron
@ McCulloch and Pitts, 1943 — MP neuron

@ Boolean inputs and output

f(z) = ﬂ(waiquZ 0)
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@ let's implement simple functions

@ NOT

o NOT(z) = 1(—z + 0.5 > 0)
@ OR

o OR(z,y) =1(z+b—0.5>0)
@ AND

o AND(z,y) =1(z+y—1.5>0)
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Threshold Logic Unit Ty

@ Can realize any Boolean function using TLUs
@ What one unit does? - Learn linear separation

@ No learning; heuristics approach
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Perceptron

@ Frank Rosenblatt 1957 (American Psychologist)
@ Very crude biological model
® Similar to MP neuron - Performs linear classification

@ Inputs can be real, weights can be different for different i/p
components

@

1 when , wiz; +b>0
f(x) =
0 else
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Perceptron

@ For simplicity we consider +1 and -1 responses

1 when 2 > 0
o(z) =
—1 else

f(x)=0o(wT -x+b)
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function
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Perceptron

@ For simplicity we consider +1 and -1 responses

1 when 2 > 0
o(z) =
—1 else

f(x)=0o(wT -x+b)

@ In general, o(-) that follows a linear operation is called an activation
function

@ w are referred to as weights and b as the bias
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Perceptron vs. MP neuron

@ Perceptron is more general computational model
@ Inputs can be real
@ Weights are different on the input components

@ Mechanism for learning weights
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@ Why are the weights important?
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@ Why are the weights important?
@ Why is it called ‘bias’? What does it capture?
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Figure credits: Francois Fleuret
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Perceptron Learning algorithm

@ Training data (7, y,) € RP x —1,1,n=1,...,N
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@ Start withw =0

® While dn;, such that ynk(wg - Xpk < 0), update
Wk+1 = Wk + Ynk * Xnk
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Perceptron Learning algorithm X

@ Training data (7, y,) € RP x —1,1,n=1,...,N

Start with w =0

® While dn;, such that ynk(wg - Xpk < 0), update
Wk+1 = Wk + Ynk * Xnk

@ Note that the bias b is absorbed as a component of w and x is
appended with 1 suitably

®
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» Colab Notebook: Perceptron
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https://colab.research.google.com/drive/1y6X4MnS3NNmYr3MthOYsGdpB-A3ixhzg?usp=sharing

Perceptron Learning Algorithm

@ Convergence result: Can show that after some iterations, no training
sample gets misclassified
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Perceptron Learning Algorithm  TEN

@ Convergence result: Can show that after some iterations, no training
sample gets misclassified

@ Stops as soon as it finds a separating boundary
@ Other algorithms maximize the margin from boundary to the samples
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